
The basics of the Impulse Excitation Technique

The principal, vibration modes and practical issues for testing at room temperature

The Principal 

Using usually a beam test-piece with uniform cross-section (round, square or rectangular),            
the characteristic vibration frequencies are determined either by continuously driving the           
vibration and sweeping the frequency to detect resonances, or by striking it, allowing it to               
‘ring’, and then deconvoluting the recorded sound spectrum. The latter method is often             
termed the ‘natural frequency’ method or the Impulse Excitation Technique (IET). The same             
set of equations is employed for both methods in order to relate frequency to elastic               
modulus. The methods and key issues are described in the following sections, with more              
detailed information relevant to particular set-ups or measurements – such as more detailed             
background on the equations and geometric correction factors, advice on selection of bar             
dimensions appropriate for different test modes, disc specimens and single crystal materials. 

There are a number of standards which specify the formulae to be used for calculating               
elastic moduli. The formulae generally have a long and well-developed pedigree, and            
generally have their simplest form for long thin beams. With shorter aspect ratios there are               
usually correction functions with increasing complexity. Within the accuracy of determining           
the dimensions or density of the test-piece, these more complex forms can generally be              
avoided or truncated without significant error provided that the beam test-pieces are ‘thin’,             
i.e. length to thickness ratio typically > 20. The formulae are well described in the ​ASTM ​E                
1876
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Vibration modes of beams 

The first step in understanding these methods is to appreciate the modes of vibration of the                
test-piece. These will depend to some extent on how and where the beam is supported, and                
the location at which the vibration is driven or excited by striking. For a prismatic beam, there                 
are basically four vibration modes of interest: 

● Out-of-plane flexural
● In-plane flexural
● Torsional
● Longitudinal

The ​flexural vibration frequencies are controlled primarily by the Young’s modulus (E) of             
the test-piece in the longitudinal direction, essentially independently of any material           
anisotropy. 

The torsional mode vibrations for an isotropic material are controlled primarily by the             
shear modulus (G) of the test-piece. If the material is anisotropic, things become more              
complicated, and it is best if the principal axes of the test-piece are parallel to the axes of                  
anisotropy. The vibrations are controlled by a mix of shear stiffness in the principal planes of                
the test-piece containing the longitudinal direction.  

The ​longitudinal mode vibrations are controlled primarily by the Young’s modulus (E) of             
the test-piece and the Poisson’s ratio in the longitudinal direction.  

1. Out-of plane flexural

There is a series of nodes (minimum vibration) and antinodes (maximum vibration)           
along the length of the freely supported beam (a ‘free-free’ beam in mathematical             
terminology). At the lowest resonant or natural frequency (the fundamental mode), the nodes             
are 0.223 of the length of the beam from each end, with antinodes at each end and in the                   
centre. For overtones or harmonics, there are more closely spaced nodes and antinodes,             
and these are shown schematically in Figure 20. 
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From Figure 20, it can be seen that the fundamental mode can be driven or arise                
during impact if the beam is supported at the nodes so as not to damp out the vibration, and                   
excited elsewhere, especially midway between nodes or at either end. It can also be              
deduced that driving or striking it in the beam centre will not result in harmonics n = 2, 4, 6,                    
etc., because these also have a node in the centre, so only alternating modes will be                
detected. All modes can be excited if the beam is driven or impacted near the end. 

Since in most cases the interest is in identifying the fundamental (n = 1) mode, it is                 
general practice to support the test-piece at or close to the fundamental flexural node              
positions and to drive or impact the test-piece in the centre. If a suspension method (e.g. a                 
loop of thread or wire) is used both to support and to drive the test-piece in resonance, then                  
the usual practice is for the loops to be positioned just outside the nodal positions.  

However, it is also of interest, but sometimes a necessity, to be able to identify the                
series of frequencies to ensure that the fundamental has been detected and correctly             
identified. This often arises with long thin test-pieces where higher modes are more easily              
excited than the fundamental. For flexure, these higher mode frequencies are not in a              
convenient simple relationship to the fundamental mode as a result of beam end inertia              
effects, and for a long thin beam the series is in the ratio (see Annex 2): 

1 : 2.757 : 5.404 : 8.933 : 13.344 : 18.638 : ..... 

The ratios become a little smaller as the length to thickness ratio of the beam is                
reduced. By comparing the measured ratios with these predicted values, a clear            
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identification of the series can be made and, importantly, the flexural modes can be              
distinguished from other modes that may be excited. 

2. In-plane flexural

Turning the test-piece by 90° about an axis parallel to its length produces another             
fundamental and series of harmonics that relate to the geometry of the test-piece. The              
pattern will be the same as in Figure 20. 

3. Torsion

Unlike the flexural modes, torsional vibration modes for a long thin isotropic ‘free-free’            
beam are in a convenient ratio sequence of: 

1 : 2 : 3 : 4 : 5 : 6 : ..... as shown in Figure 21 

In order to obtain the fundamental mode, the beam therefore has to be supported at               
its centre, and vibrated at or near its ends by driving or impacting at a location off the centre                   
line, so that most of the energy goes towards twisting the test-piece rather than flexing it.                
This is more difficult to achieve than the simple support or suspension that can be used for                 
the flexural mode. This aspect will be dealt with later. An alternative approach that has been                
tried at NPL is to target the n = 2 mode. By comparing Figures 20 and 21 it can be seen that                      
the nodal positions for fundamental flexure and second mode torsion have similar            
geometries. With these support positions, if a vibration driver or a strike is applied near the                
beam centre, but to one side of the centre line, both n = 1 flexure and n = 2 torsion will be                      
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preferentially excited. If the system employed can detect both modes simultaneously, a            
second geometry set-up is not needed to obtain the two key parameters of Young’s modulus               
and shear modulus. 

In order to identify whether a torsional mode interferes with a flexural mode excited at               
the same time, the information given in Annex 2 can be used. The dimensions of the                
test-piece, typically the width to thickness ratio, can be selected to ensure separation of              
flexural and torsional frequencies to make identification clear. 

To calculate Poisson’s ratio (ν) for an isotropic material, both Young’s modulus (E)             
and shear modulus (G) need to be determined. Then the following formula can be used: 

Accurate values of both E and G are needed for an accurate value of Poisson’s ratio.                
A 1% error in either E or G results in typically a 4% error in ν when ν ≈ 0.33!  

4. Longitudinal

Exciting longitudinal mode vibrations is commonly undertaken, but care has to be           
taken to ensure that rather lower frequencies due to simultaneous flexure or torsion are not               
also identified as the fundamental longitudinal mode. Typically, the fundamental longitudinal           
mode frequency is five to ten times greater than that of the fundamental flexural mode, and                
so should be easy to identify. Higher longitudinal harmonics are seldom encountered, but for              
a long thin test-piece they can be assumed to be an integral multiplier of the fundamental                
mode. This assumption becomes invalid when the ratio of the cross-sectional dimension to             
wavelength exceeds about 0.2.  

Vibration modes of discs 

An alternative approach that has been found to work well for isotropic materials is to use                
disc-shaped test-pieces and to excite the out-of-plane vibration. There are two series of             
vibration modes, one of which is symmetrical about the disc axis with concentric ring nodes               
(termed ‘flexural’ or ‘diaphragm mode’ here), and the other has a series of radial nodes and                
antinodes (termed ‘torsional’, or ‘saddle’ mode). Figure 22 shows the lowest order modes of              
each type. The ratio of the frequencies of the two lowest modes gives Poisson’s ratio               
through a look-up table. Either of the two frequencies with Poisson’s ratio gives Young’s              
modulus. Shear modulus can then be computed from Young’s modulus and Poisson’s ratio.             
See Annex 3 for further details.  
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Practical issues

Test-piece dimensions and surface finish 

It is clearly best if the test-pieces are specially prepared for this measurement, and have               
dimensions and dimensional tolerances that are appropriate. In particular, there are three            
main issues to consider:  

● To ensure that the frequencies at which the test-pieces vibrate in the anticipated            
modes are within the capability of the measurement system. If appropriate, use an            
estimate of Young’s modulus to calculate the frequency that is to be expected.

 6 



● Test-piece dimensions should be scaled to ensure that the appropriate frequencies          
can be obtained, and are not confused by overlapping values for different modes.

● The test-pieces should be prepared with accurate geometry and dimensions. The          
principal factor in flexural measurement is usually the thickness of the beam or disc,             
which enters into the equations as the third power. Ensure that the faces of the              
test-pieces are accurately parallel to better than 0.3% (i.e. parallelism better than           
0.001 mm for a 3 mm thick test-piece). The test-piece ends, often ignored for other              
types of testing, also need to be square to the length and machined flat.

Test-pieces should also have a good surface finish. Thickness measurements are generally            
made on the raised parts of the surface, and not on the centre-line of the roughness. It can                  
be imagined that the stiffness of the test-piece is determined by the thickness of the bulk                
material excluding the rough surface. Smooth, preferably lapped finishes are desirable,           
otherwise overestimation of the structural thickness of the test-piece will occur, leading to an              
underestimate of moduli.  

Support methods 

Support methods for test-pieces depend on the arrangements made for excitation and            
detection. In some respects, there is no ideal solution. The key issue is to minimise the                
interaction between the test-piece and its environment, but at the same time keep it in               
position during the testing. This is particularly critical for high-temperature testing where            
readjustment of the position during the tests is usually not possible 

For the flexural resonance method, the test-piece should be supported at its nodes (normally              
at the fundamental mode flexure nodes) as presented in Figure 23a. 

Figure 23a​: supporting and exciting principal flexural resonance mode 
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For the torsional resonance method, the best option is presented in Figure 23b. This ensures               
that torsion is excited preferentially. 

Figure 23b​: Supporting and exciting principal torsional resonance mode 

For the longitudinal resonance method, the test-piece can be rested on a compliant support              
such as a foam layer, such that the driver contacts one end and the detector contacts the                 
other. 

In the case of disc shapes or grinding wheels, the supporting and exciting principle is               
illustrated in Figure 23c. 

Figure 23c: ​ Support and excitation of grinding wheel 
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Resonance excitation 

The usual method with the resonance techniques is to employ a device which vibrates at a                
controllable level, and where the driving frequency can be swept over a wide range (typically               
100 Hz to 200,000 Hz). The GrindoSonic MK7 includes a set of excitation hammers of               
various sizes and materials. Also included is a ceramic reference bar to verify the proper               
functioning of the device. See Figure 24. 

Figure 24: ​ excitation tools 

Automated impactors are also suitable, especially for high-temperature use. An          
electro-magnetically driven pulser with a captive flier attached is typical. The flier strikes the              
test-piece at the appropriate position and falls back into the pulser. It is probably true to say                 
that more consistent and controllable impacts can be made using a pulser than can be               
achieved manually or by the ball-drop method. 

Vibration detection 

In resonance, the traditional method is to use a record player pick-up, but nowadays if this is                 
not available a sensitive piezo-sensor is needed. A piezo-sensor can also be used for the               
impact excitation method. The tip of the sensor can be placed in direct contact with the                
test-piece, although this does risk affecting the dynamic mass of the test-piece. It is often               
better to lightly contact the test-piece close to, but not at, a node, using a thin extension                 
probe to the sensor, so that there is minimum interference with the vibration developed. See               
also in Fig. 23 a,b,c 

As an alternative method, a microphone can be used, but it is important to ensure that it is                  
capable of detecting the ultrasonic frequencies that can be developed. It may be necessary              
to place it very close to the surface of the test-piece if the sound intensity is low.  
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Damping 

In addition to the identification of resonant frequencies, the dynamic methods can also be              
used to measure damping, or at least to undertake comparative measures of damping. To              
do this, the damping of vibration arising from the suspension system must be minimised, and               
this requires accurate positioning of the suspension or support system at the test-piece             
nodes. Damping has the effect of broadening the shape of the resonant peaks, and in most                
materials will usually increase markedly at temperatures at which the materials start to             
become plastic or where one or more of the phases begins to melt.  

Sources : 
(1) User Manual GrindoSonic MK7 vn.4.1.
(2) National Physical Laboratory (NPL) : A National Measurement Good Practice Guide

N° 98 - Elastic Modulus Measurement by J D Lord and R Morrell
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